Sequential Modeling of Parity Progression Ratio in Sub-Saharan Africa^{*}

Gebrenegus Ghilagaber^{\dagger} and Paraskevi Peristera^{\ddagger}

1 Sequential Modeling of Parity Progression

Since the actual family size decision process requires successful completion of the prior level (parity) for passage into the subsequent one. a sequential decision model accurately reflects the real decision process (Yamaguchi & Ferguson. 1995; Upchurch. Lillard. & Panis. 2002). The model of family size decision used in this paper specifies the propensity of progressing to successively higher parity levels. conditional on having completed the next lower parity – a discrete sequential choice model. Apart from measured covariates. the sequential probabilities may depend on individual and decision varying covariates and unobserved heterogeneity in the propensity to continue to the next parity.

As the reasons to have a second child may differ from those to have a third child. we allow the effects on the transition propensities to vary between these two transitions (first to second. second to third). Thus, there are up to two sequential choices of whether to continue to the next level (s = 1.2), each conditional on having continued to the previous level. Here, s = 1 corresponds to transition from 1 to 2 children, and s = 2 corresponds to transition from 2 to 3 children.

We use a multilevel sequential probit model of individual-family (mother) choice. Family i progresses from having completed parity s to complete the

^{*}Contribution to the 2015 Annual Meeting of the Population Association of America (PAA), San Diego, April 30 - May 2, 2015

[†]Department of Statistics, Stockholm University, Sweden. Gebre@stat.su.se

[‡]Stress Research Institute, Stockholm University, Sweden. Paraskevi.Peristera@su.se

next parity s + 1 if its propensity to continue is positive. $I_s > 0$. The propensity of mother (family) *i* progressing is thus determined by the probit index function

$$I_{i_{(s)}} = \alpha_{0s} + \alpha'_{1s} X_{i(s)} + v_i + \theta_s$$
 (1)

for s = 1.2. where X_s is a vector of exogenous covariates affecting family size decisions. α_{0s} and α_{1s} are decision specific intercepts and coefficients. respectively. v_i is a residual term capturing family level unobserved heterogeneity (shared-frailty) that may affect all levels of decision on family size. and θ_s is a decision specific stochastic element (normalized to $\theta_s = 1$. for all s). Each is assumed to be normally distributed:

$$v N \left(0.\sigma_v^2 \right)$$
. $\theta_s N \left(0.1 \right)$

The model also allows parameters to vary across decisions (hence the s subscript on the parameter vector α). In other words, we will estimate two intercepts and two sets of coefficient estimates, one set for transition to second child, and another set for transition from second to third.

Table 4 about here

In Table 4. we report results from fitting nested sequential probit models in which we allow the effects to vary across decision levels. The results in model M0 (when no covariates have been included) show that the most common transition is from single parity (one child) to parity 2 (2 children). We also note that women with higher IQ (in M1) have lower propensities to increase family size from two to three. However, any maternal IQ effect disappears once more variables are entered (in M4 and M5). Hispanic women have higher propensities of increasing family size from two to three (in M2). whereas Black women have lower propensities to have a second child. but higher propensities to have a third child (in M2). The higher propensity of having a third child disappears when mother's age at the birth of first child is entered. Women who were older at the birth of their first child (in M3) have lower propensities to increase family size. whereas those with higher incomes (in M4) have higher propensities. Finally, women with no college education (in M5) have a lower propensity to have a third child compared to those with some college. when all variables are included in the model.

Fertility studies generally find negative (or no) relationships between socioeconomic status indicators and family size in Western countries (e.g. Lawson and Mace. 2010). Our analyses. although restricted to families with at most three children. show some positive effects of income and education when we control for maternal IQ. maternal race. and maternal age of first child. These results partly support findings of Weeden et al. (2006) who reported that male income (or income of spouse of female) may have a positive effect on family size.

2 Preliminary Results

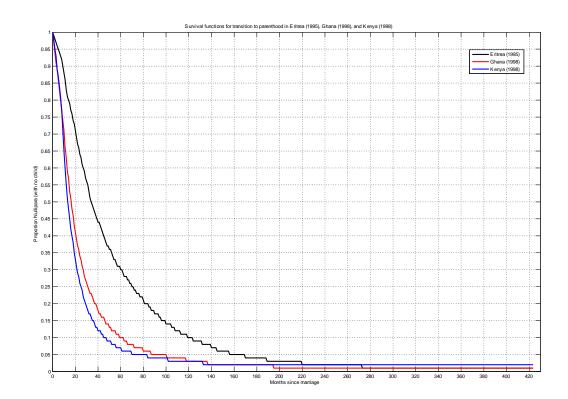
		Transition to parity							
Coviate	Levels	1	2	3	4	5	6	7+	
Moth Educ	Primary	0.374	-0.097	-0.078	-0.125	-0.021	-0.294	0.280	
	Secondary+	0.793	-0.099	-0.414	-0.284	-0.507	-0.585	-0.392	
Residence	Rural	0.196	0.447	0.339	0.114	-0.027	-0.368	0.144	
Birth Cohort	1971-75	1.626	1.810	1.721	20.181	Ref	Ref	-	
	1966-70	2.855	3.369	3.359	21.252	1.456	20.884	Ref	
	1961-65	3.699	4.550	4.417	22.464	2.413	21.686	0.782	
	1956-60	4.301	5.274	5.216	23.346	3.291	22.575	2.032	
	1951 - 55	4.079	5.851	5.448	23.841	4.226	22.951	2.569	
	1946-50	5.080	5.486	5.533	23.777	4.065	23.342	2.831	
AgeMar	20-24	-1.336	-1.280	-0.863	-0.891	-0.539	-0.959	-0.684	
	25+	-2.520	-2.547	-1.988	-1.475	-1.644	-1.688	-1.957	

Table 1: Estimated effects on log-odds of transition to various parities across covariates: Eritrea

					• . •	·			
		Transition to parity							
Coviate	Levels	1	2	3	4	5	6	7+	
Moth Educ	Primary	0.132	-0.054	-0.406	-0.022	-0.022	0.021	-0.175	
	Secondary+	-0.179	-0.566	-0.936	-0.624	-0.624	-0.716	-0.385	
Residence	Rural	0.570	0.446	0.524	0.692	0.692	0.438	0.667	
Birth Cohort	1971-75	1.632	2.487	19.990	Ref	Ref	Ref	-	
	1966-70	3.495	4.194	21.611	0.747	0.747	20.740	Ref	
	1961-65	4.389	5.620	23.200	2.078	2.078	21.350	1.050	
	1956-60	5.367	6.347	24.205	2.909	2.909	22.440	1.876	
	1951 - 55	6.410	6.716	24.547	3.633	3.633	23.078	2.765	
	1946-50	5.610	7.129	24.971	3.814	3.814	23.042	3.108	
AgeMar	20-24	-2.021	-1.255	-1.287	-0.953	-0.953	-0.737	-0.749	
	25 +	-3.840	-2.677	-2.399	-1.736	-1.736	-1.122	-1.717	

Table 2: Estimated effects on log-odds of transition to various parities across covariates: Ghana

Table 3: Estimated effects on log-odds of transition to various parities across covariates: Kenya


		Transition to parity							
Coviate	Levels	1	2	3	4	5	6	7+	
Moth Educ	Primary	0.774	-0.082	-0.088	-0.191	-0.160	-0.323	-0.321	
	Secondary+	0.902	-0.464	-0.550	-0.887	-0.548	-0.626	-1.062	
Residence	Rural	0.671	0.462	0.697	1.012	1.197	0.744	0.362	
Birth Cohort	1971-75	1.845	1.663	3.499	19.456	Ref	Ref	Ref	
	1966-70	3.677	3.805	4.931	21.275	0.638	0.824	20.522	
	1961-65	4.482	5.457	6.527	22.463	1.668	1.778	21.413	
	1956-60	3.995	5.709	7.336	23.261	2.543	2.733	22.261	
	1951 - 55	4.636	5.857	7.898	23.483	3.014	3.584	22.892	
	1946-50	4.294	5.539	7.815	24.147	3.696	3.848	23.239	
AgeMar	20-24	-1.712	-1.563	-1.536	-1.028	-1.010	-1.061	-0.493	
	25+	-3.204	-3.048	-2.352	-2.428	-1.608	-1.550	-3.910	

		Transition to parity 1			Transitio	Transitio		
Coviate	Levels	Eritrea	Ghana	Kenya	Eritrea	Ghana	Kenya	Eritrea
Moth Educ	Primary	0.374	0.132	0.774	-0.097	-0.054	-0.082	-0.078
	Secondary+	0.793	-0.179	0.902	-0.099	-0.566	-0.464	-0.414
Residence	Rural	0.196	0.570	0.671	0.447	0.446	0.462	0.339
Age at Int	20-24	1.626	1.632	1.845	1.810	2.487	1.663	1.721
	25 - 29	2.855	3.495	3.677	3.369	4.194	3.805	3.359
	30-34	3.699	4.389	4.482	4.550	5.620	5.457	4.417
	35-39	4.301	5.367	3.995	5.274	6.347	5.709	5.216
	40-44	4.079	6.410	4.636	5.851	6.716	5.857	5.448
	45-49	5.080	5.610	4.294	5.486	7.129	5.539	5.533
AgeMar	20-24	-1.336	-2.021	-1.712	-1.280	-1.255	-1.563	-0.863
	25 +	-2.520	-3.840	-3.204	-2.547	-2.677	-3.048	-1.988

Table 4: Estimated effects on log-odds of transition to various parities across covariates and

Table 5: Estimated effects on log-odds of **transition parities** across covariates and countries

		Transition to parity 1			Transition to parity 2			
Coviate	Levels	Eritrea	Ghana	Kenya	Eritrea	Ghana	Kenya	
Highest Educ Level	Primary	0.374	0.132	0.774	-0.097	-0.054	-0.082	
	Secondary+	0.793	-0.179	0.902	-0.099	-0.566	-0.464	
Residence	Rural	0.196	0.570	0.671	0.447	0.446	0.462	
Age at Interview	20-24	1.626	1.632	1.845	1.810	2.487	1.663	
	25-29	2.855	3.495	3.677	3.369	4.194	3.805	
	30-34	3.699	4.389	4.482	4.550	5.620	5.457	
	35-39	4.301	5.367	3.995	5.274	6.347	5.709	
	40-44	4.079	6.410	4.636	5.851	6.716	5.857	
	45-49	5.080	5.610	4.294	5.486	7.129	5.539	
Age at Marriage	20-24	-1.336	-2.021	-1.712	-1.280	-1.255	-1.563	
	25+	-2.520	-3.840	-3.204	-2.547	-2.677	-3.048	

